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Viscosity in the escape-rate formalism
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We apply the escape-rate formalism to compute the shear viscosity in terms of the chaotic properties of the
underlying microscopic dynamics. A first-passage problem is set up for the escape of the Helfand moment
associated with viscosity out of an interval delimited by absorbing boundaries. At the microscopic level of
description, the absorbing boundaries generate a fractal repeller. The fractal dimensions of this repeller are
directly related to the shear viscosity and the Lyapunov exponent, which allows us to compute its values. We
apply this method to the Bunimovich-Spohn minimal model of viscosity which is composed of two hard disks
in elastic collision on a torus. These values are in excellent agreement with the values obtained by other
methods such as the Green-Kubo and Einstein-Helfand formulas.
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I. INTRODUCTION where the difference between the sum of positive Lyapunov
exponents and the KS entropy is nonvanishing because the
The link between the irreversible phenomena governed bgystem is here underonequilibriumconditions. These non-
macroscopic equations such as the Navier-Stokes equatioeguilibrium conditions select the trajectories of the many-
and the microscopic reversible dynamics of the atoms an@ody system which do not escape out of a phase-space re-
molecules is a fundamental problem. In this context, it hagjion specific to the transport property of interest. This phase-
been shown that typical many-body systems of interactingpace region is defined by requiring that the Helfand moment
particles present a chaotic dynamids-4]. This microscopic  associated with the transport property remains bounded in an
chaos develops a sensitivity to initial conditions over a timenteryal of extensiony. In the limit y—c, the nonequilib-
scale of the order of the intercollisional time of the atoms;,n condition is progressively relaxed and the sum of posi-

and r_nolecules. T_h!s sensitivity to initial condmo_ns is char- tive Lyapunov exponents as well as the KS entropy approach
acterized by positive Lyapunov exponents which are th h

. : ir equilibrium value satisfying Pesin’s equality). Under
rates of exponential separation between some reference an . o T S .
. . S . —~nonequilibrium conditions, Pesin’s equality is not satisfied
perturbed trajectories of the system. The sensitivity to initial

conditions results into a huge dynamical randomness charag-nd the difference gives the rate of escape of trajectories out

terized by a positive Kolmogorov-SindKS) entropy per of the aforementioned phase-space red®2]. This region

unit time given by the sum of positive Lyapunov exponentscontains a fractal repelleF, composed of trajectories which
if the system is at equilibrium: escape neither in future nor in past. The escape rate is char-

acteristic of this fractal repeller and is related to the transport
coefficient, leading to formul#2). The escape-rate formal-

hes= >\, 1) ism has already been applied to the transport property of
KS o diffusion [13] as well as to reaction-diffusion processes
[14,15.

The purpose of the present paper is to apply the escape-

X . ; L ate formalism to viscosity. The system we use as a vehicle
chaos provides an efficient mechanism of randomization o

. - . .of our study is a minimal model of viscosity previously ana-
the different observable quantities such as the MICroSCopiL 4 by Bunimovich and S ohfi6]. The minimal models
currents associated with the transport properties. Y y P '

For a Hamiltonian-type microscopic dynamics, a connec®f transport are of special interest begause the.V. are the 'si'm-
; H:gest possible models already presenting a positive and finite

rIﬁ;’;msport coefficient. It is known that a minimal model
should contain only one particle for diffusion, two particles
g)r viscosity, and three patrticles for heat conducfibé]. For
viscosity, we therefore consider here the model composed of
two hard disks moving on a torus and undergoing elastic
collisions. In a previous pap¢fi7], we have described this
model and some of its properties for a hexagonal geometry
and a square geometry. Our aim here is to compute viscosity,
thanks to the escape-rate formalism, and to show the equiva-
lence with the results of the Green-Kubo and Einstein-

' 2 Helfand formulas already obtained in the previous paper
Fx [17].

an identity known as Pesin’s equalit$,6]. This dynamical

transport properties, thanks to the escape-rate formalis
[7-11]. In this formalism, the gap between the kinetic time
scale of chaotic properties and the hydrodynamic time scal
of transport properties is bridged by linking the transport
coefficients tadifferencesbetween chaotic properties. In this

formalism, the following formula has been derived for vis-
cosity [8]:

2
. X
n= I|m (;) (}\ZO )\i_hKS

X—®
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In the present paper, we compute the viscosity by using X ~
the chaotic and fractal properties of the repeller. We use a - §$ny$+
variant of Eq.(2) in which the difference between positive
Lyapunov exponents and KS entropy is given in terms of the ) ) )
Lyapunov exponents and the partial fractal dimensions of thd Nese trajectories are exceptional because the Helfand mo-
fractal repeller. Indeed, the fractality of the repeller is a cor-ment escapes out of this interval for almost all the trajecto-
ollary of its chaoticity so that its fractal dimensions are re-fies. Therefore, the repeller has a vanishing probability mea-
lated to its KS entropy. Accordingly, the knowledge of the Sure in the phase space albeit it is typically composed of a
partial dimensions allow us to evaluate the KS entropy. nonenumerablg set of trajectories. The repeller thus typically

The paper is organized as follows. In Sec. II, we develogorms a fractal in the phase spa@&10].
the escape-rate formalism for shear viscosity. In Sec. Ill, we We set up a first-passage problem of the Helfand moment
present the fractal repeller of viscosity in the two-disk by introducing absorbing boundaries @{,= = x/2. These
model, which we compare with the fractal repeller of diffu- absorbing boundaries in the space of variations of the Hel-
sion in the Lorentz gas. In this way, we show that a specifidand moment correspond to equivalent absorbing boundaries
fractal repeller is associated with each transport propertyin the phase space of the system. In the phase space, the
Finally, the chaotic and fractal properties are described irabsorbing boundaries delimit a domain which contains the
Sec. IV where we compute the viscosity coefficient from thefractal repeller. We consider a statistical ensemble of initial
positive Lyapunov exponent and the fractal dimension of theconditions taken inside this domain and we run their trajec-

(6)

repeller. Conclusions are drawn in Sec. V. tories. When a trajectory reaches the absorbing boundaries it
escapes out of the domain and is thus removed out of the
Il. VISCOSITY IN THE ESCAPE-RATE FORMALISM statistical ensemble. _ o
_ _ Under the forward time evolution, the remaining trajecto-
A. Helfand moment for viscosity ries belong to the stable manifolds of the repeller. Under the

In the previous papdil7], we have shown that the shear Packward time evolution, the remaining trajectories belong

viscosity coefficient can be computed with the Einstein-t0 the unstable manifolds of the repeller. Under both the
Helfand formula[18] forward and backward time evolutions, the remaining trajec-

tories belong to the repeller itself which is the intersection of
1 - ) its stable and unstable manifolfi8]. For a typical chaotic
7= Txy,xy= Myxyx= im §<[ny(t)_ny(0)] ) (3 dynamics, almost all trajectories escape out of the domain
o after some time so that the repeller as well as its stable or
unstable manifolds are fractal objects.
These fractals can be generated by allowing the escape of
N trajectories over a long but finite time interval. Over a finite
2 Xa(t) Pay(t) time, there remains a sizable set of trajectories, which pro-
a=1 gressively reduces to the fractal as the time interval becomes
longer and longer. The number of trajectories in the(set
4) statistical ensemblalecays with time. Typically, the decay is
exponential and characterized by the so-called escape rate
The escape ratg can be evaluated by solving the first-
for a system oN particles of positiom,=(X,,Ya, ...) and  passage problem of the Helfand moment by introducing ab-
MOMeNtumMP, = (Pax,Pay, - - - ) MOving in a domain delim-  sorbing boundaries aG,,=* x/2. Indeed, the Einstein-
ited by periodic boundary conditions. As explained in theHelfand equation(3) shows that the Helfand moment
previous papef17], the particles must satisfy the minimum performs a diffusivelike random walk. Accordingly, the Hel-
image convention, which requires the presence of the extreand moment can be considered as a random varigble
terms in the Helfand momert#) involving the Jump$_xgs) =Gy, for which the probability densityp(g) obeys a
of the particles to fulfill the periodic boundary conditions.  diffusion-type equatiofig]:

are the times of the jumpp{) = pay(ts) is the momentum at

where the Helfand moment is defined by

= B B
Gyx= \[vax: \[v

N
—321 E AxFpat—ty)

the timet; of the jump. In Eq(3), the averagé- ) is taken in )
the equilibrium microcanonical ensemble for which a_p: °p @)
ot 99 '
N
B where the role of the diffusion coefficient is played by the
shear viscosity(3) itself. At the absorbing boundaries, the
B. First-passage problem for viscosity g_rqbability density must satisfy the absorbing boundary con-
itions:

The central object of the escape-rate formalism is the
fractal repeller which is composed of the phase-space trajec-
tories for which the Helfand moment fluctuates forevier p( _ {) =p( " {) -0 %)
the future and the pastvithin some interval: 2 2 '
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The solution of the diffusion-type equatiofY) with the
boundary condition$8) is given by Y(X):(AZO Ni—hgs (14
i F
. [mn [ x o N
p(g,t)= 21 Cn exXp(— ypt)sin 7 g+ 2/ 9 If we combine this result from dynamical systems theory
n=

with Eg. (13), we obtain the chaos-transport formy® for
with viscosity as originally derived by Dorfman and Gaspgsi
An equivalent formula can be obtained which involves the
mn\2 partial fractal dimensions of the repeller instead of the KS
Yn= 7](—) : (10 entropy. Indeed, the fractal character of the repeller is a di-
X rect consequence of the escape of trajectories so that the KS
and where the coefficien, depends on the initial probabil- €ntropy is no longer equal to the sum of Lyapunov exponents
ity density. The numbe(t) of trajectories remaining be- but to
tween the absorbing boundaries at the current tingere-
lated to the probability density by hks= )\ZO diX;, (15)
+x/2 I
Mt) =/\[0f p(g.)dg~Noexp(—yit).  (11)  where the coefficients are the partial information dimensions
X2 of the repeller associated with each unstable direction of cor-
After a long time, the escape is dominated by the smallesiesponding Lyapunov exponent [5]. These partial dimen-
decay ratey;, which can therefore be identified with the Sions satisfy
escape ratey. In this way, we obtain thescape rateas a

function of y: O<di=<1, (16
-2 so that the KS entropy is in general smaller than the sum of
y=y,= ,7<_) (12) positive Lyapunov exponents. Accordingly, the escape rate
X can be expressed as
This result is obtained by using the diffusion-type equation
(7) which is expected to hold over spatial distances larger 7(X)=< 2 Cik; (17
than the mean free path of the particles. Therefore, the pa- ri=0 F,
rametery must be sufficiently large so that the Helfand mo- ) ] ) ]
ment is in a diffusion regime and E¢g) holds. in terms of the partial codimensions defined as
The shear viscosity coefficient can thus be obtained from c=1—d (18)
the escape rate which depends on the parametsr sepa- e a
ration between the absorbing boundaries as Combining with Eq.(13), the shear viscosity is given by
2
X 2
n= lim (;) y()(). (13) n= lim (K) ( Z Ci)\i (19)
X—® Xx—® m™ \i>0

F,
X
In the following we call Eq.(13) the escape-transport for-

mula In the limit y—o0, the Lyapunov exponents reach their equi-

librium values\; ¢4, while the codimensions vanish typically

ascj~ y 2 if transport is normal. If we introduce the quan-

tities
At the microscopic level of description, the escape rate is

controlled by the fractal repelleF, which is composed of all

the trajectories which satisfy conditigf) under forward and

backward time evolutions. The repeller is the support of a

natural invariant probability measure. This invariant measureeq. (19) provides a decomposition of the viscosity coeffi-

is natural because it is generated by the dynamics and can kgnt on the spectrum of Lyapunov exponents such as

approximated by a statistics based on the trajectories remain-

ing within the absorbing boundaries after a long but finite B E an. 21)

time. The dynamics on the fractal repeller is characterized by = N o0 17 eqr

positive Lyapunov exponents and a KS entropy, both evalu- '

ated with respect to the natural invariant measure of the refypically, the escape is most important in the most unstable

peller. If the dynamics is unstable some Lyapunov exponentdirection corresponding to the maximum Lyapunov exponent

are positive. If the dynamics is chaotic the KS entropy is\;. Therefore, the repeller is more depleted in the most un-

positive. On a repeller, the sum of positive Lyapunov expo-stable direction and the corresponding partial dimensipn

nents differs from the KS entropy and the difference givess lower than the further ones. This reasoning suggests that a

the escape ratg(y) of the repeller7, [5,12]: typical behavior is

C. The chaos-transport formula

2

Ci s (20)

. (X
a;=Ilim|—
aa

X—®

Tx
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( > Chi| =(ci\)z, (22 ¢0,’
\i>0 X ,
‘7- e
X
for y— if the maximum Lyapunov exponent; is well A

defined.
This is precisely the case in two-degree-of-freedom sys-
tems such as the two-disk model where the chaos-transport
formula reduces to
2 FIG. 1. Initial conditions of the particles in the Sinai billiard.
7= |im(5) (cN) 7, 23
x—e\ T ! following. We showed in Ref.17] that the dynamics reduces

whereN is the uniaue positive mean Lyapunov exponent ancﬁ a Sinai billiard in the center-of-mass frame and that the
que p yap P elfand moment4) with N=2 is then given by

¢, the corresponding codimension which should be under-
stood as the partial information codimension of the unstable 3
manifolds of the fractal repeller given in terms of the partial Gyx(t)= \[V X(Dpy(H)— 2 Ax(s)p§5) o(t—tg) |,
information dimension by Young’s formuld 9] s

(27)

¢=1-d=1-——. (29

where ,y) are the coordinates of the relative position of
It is known that the partial information dimension of the both disks and {§,,p,) the canonically conjugated relative
repeller is well approximated by the partial Hausdorff dimen-momentum. The jumps happen when the trajectory of Sinai's
sion if the escape rate is small enough and if Ruelle’s topobilliard crosses the hexagonal boundary. If the trajectory
logical pressure does not present a discontinuity. This lastrosses the side of label the trajectory is reinjected at the
condition is fulfilled if the system does not undergo a dy-opposite side so that the jump in position is given by the
namical phase transition, which is the case in the finite54ice vectorar® = — c® corresponding to the side.
horizon regimes of Sinai's billiard which controls the dy- A fractal repeller is defined by considering all the trajec-

namics of both the' !_orentz gas and the two-disk r.“‘ﬁ‘.“@]- tories such that their Helfand moment satisfies the conditions
Under these conditions, we can replace the partial informa-

tion codimension by the partial Hausdorff codimension in the

chaos-transport formula and obtain the viscosity as X X

—§$GYX$ +§, (28)
7= lim

X—*

2
X
;) (M), (25

In the limit y—c°, the Lyapunov exponent converges to its Where the parametey should be large enough. The stable
equilibrium value so that we can also write manifolds of the fractal repeller can be visualized by plotting

the initial conditions of trajectories satisfying conditioi28)

(x\? over a long time interval extending forward in time. These
”:Aeq'[‘l(; CH(X). (26) jnitial conditions are taken on the disk of Sinai's billiard. The
X initial conditions are specified by the angleof the initial
under similar conditions as E¢R5). position and the anglé that the initial velocity makes with
a vector which is normal to the disk at the initial position
Il. FRACTAL REPELLER (see Fig. 1 The initial conditions are plotted in the Birkhoff

. . . . coordinates §,sin¢).
In this section, our purpose is to display the fractal repel-  rigyre 2 depicts the fractal composed of the stable mani-
ler associated with viscosity in the two-disk model and 1045 of the repeller for viscosity in the two-disk model. We

compare_it with the fractal repeller of diffusion in the Lor- hovide evidence that the set is fractal by zooming succes-
entz gas in order to show that they are different and thereforgively on it in Figs. 3 and 4, where the self-similarity of the

specific to each transport property. repeller clearly appears.

Let us take a section across the repeller in Fig. 2at
= 7/4. Taking the escape time of the corresponding trajec-
The two-disk model has been studied by Bunimovich andory, we have obtained the escape-time function depicted in
Spohn who proved, thanks to a central limit theorem, thafig. 5. The time for the trajectory to escape out of the phase-
viscosity is positive and finite in this minimal modél6]. In  space region corresponding to interya8) is infinite if the
the previous papefl7], we have considered the two-disk trajectory belongs to the stable manifold of a trajectory of the
model in the hexagonal geometry which we shall use in theepeller. Indeed, this trajectory is then asymptotic to a trajec-

A. Shear viscosity in the two-disk model

041205-4
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FIG. 2. Fractal repeller associated with viscosity in the hexago- FIG. 4. Enlarging of the domain into the rectangle in Fig. 3.
nal geometry with absorbing boundariesyat 2.70. The density is
n=(2N)=0.45. diffusion by setting up a problem of first passage of the
tracer particle at some absorbing boundaries. If we consider
tory which does not escape. Accordingly, the escape-timéhe x coordinates, the tracer particle does not escape as long
function has vertical asymptotes on the stable manifolds oés the following condition is satisfied:
the repeller. Since the repeller is fractal the vertical asymp-

totes are not enumerable, which explains the behavior in LAY 29
Fig. 5. 2 2
B. Diffusion in the Lorentz gas The absorbing boundary conditions are therefore defined at

o o _ ~ x==R/2. With these absorbing boundaries, the system is
Diffusion of a tracer particle in the hard-disk periodic called anopen Lorentz gafl3].

Lorentz gas has been studied with the escape-rate formalism The trajectories trapped within interv@9) form a fractal

in Ref.[13]. In this Lorentz gas, the tracer particle undergoesrepeller as shown in Ref13]. In order to compare with the
elastic collisions on hard disks forming a triangular lattice. Infracta| repe”er of Viscosity, we can plot the fractal repe”er of
a unit cell of the lattice, the dynamics also reduces to Sinai'giffusion in a similar way as here above for viscosity
billiard. The energy of the tracer particle is conserved as wellFig. ).

as the phase-space volumes. Sinai and Bunimovich have Here again, we plot all the initial conditions of trajectories
proved that the dynamics is ergodic and mixing and that th@emaining within interva29) over a long forward time in-
diffusion coefficient is pOSitiVe and finite in the finite-horizon terval. These initial conditions are p|0tted in the same
regime[20]. For diffusion, the associated Helfand moment is
simply given by one of the coordinates,{) of position of 30
the tracer particl¢8]. An escape process is associated with

25
0.25
o 20
g
0.125 =
L 15
&
Q
< &
P 0 10
R
i 5
-0.125 ¢
OIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII
-1 -0.5 0 0.5 1
. Sl ; S sin ¢,
12 1.4 1.6 1.8 2
00 FIG. 5. Escape-time function vs sify (6y= 7/4). This function
corresponds to a section in Fig. 2 along a vertical linefgt
FIG. 3. Enlarging of the domain into the rectangle in Fig. 2. = «/4.
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FIG. 6. Fractal repeller associated with diffusion in the hexago-
nal geometry with absorbing boundariesRi=4. The density of
hard disks isn=0.45.

FIG. 8. Enlarging of the domain into the rectangle in Fig. 7.

to the repeller associated with diffusion since the positon

Birkhoff coordinates §,sin¢) of a disk around the coordi- is bounded and satisfigdq. (29)]. However, the viscosity

natex=0 in the Lorentz gas. The set of the selected initialHelfand moment of this trajectory does not satisfy condition

. ) , 28) so that it does not belong to the repeller of shear vis-
conditions approximates the stable manifolds of the fractaf osity. With Eq. (27), we see that, in one direction, both

repeller. We zoom successively on this fractal in Figs. 7 and, . S )
8,|?Nhich provides evidence of )iis self-similarity. As g conse—AX(S) andp§f) are posmve. Therefore, the contripution at this
quence, the repeller is also fractal. The fractal dimension oP3SSa9€ IS posm(\;e for tf(\g Helfand moment. In the other
the repeller is related to the diffusion coefficient of the dlrect|osn,_ bothAx™ and py” are negative but the product
Lorentz gas and its Lyapunov exponent, as shown iX'”P;’ is also positive. Accordingly, the Helfand moment
Refs.[7,13]. increases forever on this trajectory which, therefore, does not
belong to the repeller associated with shear viscosity.

On the other hand, we can observe the opposite case.
Figure 10 depicts an example of trajectory escaping from
We observe that the two fractal repellers associated, reinterval (29) although its Helfand moment of viscosity re-
spectively, with diffusionsee Fig. § and viscosity(see Fig. mains between the absorbing boundary conditi@;.

2) are different. Indeed, although the global structure is simi- The repellers associated with different transport properties
lar, the trajectories belonging to the different repellers are noare therefore different.
the same.

To convince us of this difference, we take some examples
of trajectories. In Fig. 9, we have a periodic trajectory bounc- . . . .
ing between two disks in the billiard. This trajectory belongs _ N this section, we show that the shear viscosity can be

obtained from the escape rate of the repeller by using the

escape-transport formule3). We consider a sequence of
repellers with larger and larger values of the paramgter
The escape rate(y) is numerically evaluated for each re-

C. Comparison between diffusion and viscosity

D. Escape rate and viscosity

0.25 o

-0.125 |

FIG. 9. Periodic trajectory belonging to the fractal repeller as-
FIG. 7. Enlarging of the domain into the rectangle in Fig. 6. sociated with diffusion but not to the one associated with viscosity.
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18 | -
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14
12 F N
2 0f .
*:, - /o -
8 -
6 — =
FIG. 10. Typical trajectory which moves through the whole sys- c .
tem but which has a Helfand moment that remains close to zero 4 E =
This trajectory belongs to the repeller of viscosity but not to the one 2 -
of diffusion. 0:- -------- Loty ditttert 1 |||||||||||||||||||:
0.2 0.3 04 0.5 0.6 0.7 0.8
peller by computing the decay of the numbéft) of trajec- density

tories still within interval(28) at current time and by extract-

ing the escape rate from the exponential decay. The escape FIG- 12. Comparison between two methods of calculating the

rate is observed to behave agy)~ x 2 and the shear vis- shear _wscosny coefﬁuenby;_y,xy in _the square geometry: the

cosity coefficient is then obtained with EQ.3). Elnsteln-HeIfaqd formulécontinuous I!naaand the escape-transport
Figures 11 and 12 depict the viscosity directly computed©rmuia (13) with Xx=45Jn for densityn<0.66, y=100yn for

from the escape rate and compared with the values obtainéb®’<n<0-75, andy=150yn for 0.76<n (dots.

by the Einstein-Helfand formula in Rdf17] in the hexago-

nal and square geometries, respectively. As in the previouly using the chaos-transport formu5) which related the

paper[17], we consider reduced viscosities defined by viscosity to the Lyapunov exponent and the Hausdorff codi-

mension of the repeller of viscosity.

7ij ki

*
M= = (30)
2mkgT A. Lyapunov exponent
We observe in Figs. 11 and 12 the excellent agreement be- In Sinai’s billiard which controls the reduced dynamics of
tween both methods. the two-disk model, the elastic collisions between the disks

are defocusing. This induces a dynamical instability of the

trajectories which is characterized by the Lyapunov expo-

IV. VISCOSITY FROM THE CHAOTIC AND FRACTAL nents. These exponents are the rates of exponential separa-
PROPERTIES OF THE REPELLER tions between a reference orbit and infinitesimally close or-

In this section, we compute the shear viscosity coefficienPitS. Since the dynamics of Sinai’s billiard is symplectic and

in terms of the chaotic and fractal properties of the repellei’0lume preserving in the four-dimensional phase space, the
Lyapunov exponent spectrum is-{,0,0,—\) so that their

5 EITTT T sum is vanishing. One of the Lyapunov exponents vanishes

45 = 3 because of the absence of exponential separation in the di-
TE 3 rection of the flow. Another one corresponding to the direc-
4= = tion perpendicular to the energy shell equals zero because of
£ asC 3 energy conservation.
=) S 3 There exists a method to calculate the positive Lyapunov
35 3 = = exponent by considering the motion of a front of particles
S 25F = accompanying the reference particle and issued from the
2 LE = same initial position but with different initial velocitid&1].
2 s 3 Because the dynamics is defocusing, this front is expanding.
2 e E Locally on the reference orbif, the front (called the un-
g 1E — stable horocycleis characterized by a curvaturg,(I'y) or,
S 05 E 3 equivalently, by its radius of curvatured{I;). Thanks to
2 — R 3 this method explained in detail in Refgl0,13, we have

02 025 03 035 04 045 05 055 06 065 07  computed the positive Lyapunov exponent as a function of
the density of the systertin the hexagonal and square ge-
ometrieg. The equilibrium values of the Lyapunov exponent

FIG. 11. Comparison between two methods of calculating theare obtained by running a trajectory in Sinai’s billiard with-
shear viscosity coefficient* = 7}, ,, in the hexagonal geometry: Out absorbing boundaries and by averaging over a long time
the Einstein-Helfand formulgcontinuous ling and the escape- interval. The resulting numerical values are depicted in
transport formula13) with y=60yn (dots. Figs. 13 and 14.

density
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10:||||||||||||||||||||||||||||||||||||||||||||||||||||||I: 4_||||||||||||||||||||||||||||||||||||||||||||||||||||||||||_
oF E 35 &
8 | = - .E ]
2 = 3 8 3:— -
8 TE ERE-D: ]
=] = = D -
o 6F = & E .
[ = = [} - .
> SE — > 20 -
e = = = - -
35 4F — S 15— i
S = = = i E
§~. 3 E — § E E
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2F — ; 3
15_ _E 05 — —
0 ;|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||E 0 SETTTETITI IRTTTETETI TARTRNIT] NTTRTTATE ITETRNNTI FUUTRITEL:
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 04 05 0.6 0.7 0.8
density density

FIG. 13. Equilibrium Lyapunov exponent vs density in the hex-  FIG. 14. Equilibrium Lyapunov exponent vs density in the
agonal geometry. square geometry.

In the chaos-transport formul@5), the Lyapunov expo-  dimensiond,,=1— ¢y, is the Hausdorff dimension of the ver-
nent has to be evaluated for the trajectories belonging to thgcal asymptotes of the escape-time function depicted in Fig.
fractal repeller. The statistical average is here carried out fog_|ts values range in the intervakd,<1.
the natural invariant probability measure concentrated on the The Hausdorff codimension can be obtained using the fol-
fractal repeller. This invariant measure defines a nonequilibrowing numerical algorithm developed by McDonadt al.
rium state for the motion. As aforementioned, the natura[23]_ We consider an ensemble of pairs of trajectories start-
invariant measure is generated by the dynamics itself. ACing from initial conditions ¢, differing in a valuee. The
cordingly, the Lyapunov exponent is numerically computediime taken by the trajectories to escape out of the system is
by averaging over a statistical ensemble of trajectories whiclyiven by the escape-time function in Fig. 5. The pair is said
has not yet escaped after a long but finite time. This entg pe uncertainif the trajectories and their Helfand moment
semble can be as large as wished by increasing the numbgfesent at least one of the following conditiokig:both tra-
of initial conditions. In this way, we can calculate the non-jectories follow paths that differ by the successive passages
equilibrium values of the Lyapunov exponent. through the cell boundaries, that is, if we associate to each
_ In Table I, we present a comparison bet\/\{een the eqUi”btrajectory a symbolic sequence{,,, ...) which gives
rium Lyapunov exponenk.qq without absorbing boundary the |abels of the cell boundaries across which the successive
conditions(as depicted in Figs. 13 and Jland the nonequi- passages occur, and both sequences are diffeignone of
librium Lyapunov exponenh,.{x) evaluated over a non- poth trajectories has its Helfand moment which reaches the
equilibrium_ measure which has the fractal repeller as SsUPfixed absorbing boundarigg€8) when the Helfand moment
port. The difference between these exponents is small and @ the other one still remains within these limits. If the pair
the order of the escape rate, in agreement with the results @foes not present one of these conditions it is catiedain
Ref. [22] for the disordered Lorentz gas. The fractionf (€) of uncertain pairs in the initial ensemble is

known to behave as the power

B. Hausdorff dimension and viscosity

~ ¢CH
In order to determine the viscosity by the chaos-transport fle)~e™, (3Y)

formula (25), we need to determine the partial Hausdorff
codimensioncy of the fractal repeller. The corresponding giving the Hausdorff codimension as its exponent. Deriva-

TABLE I. Values of the characteristic quantities of chaos for different densitieghe hexagonal system:
\eq is the equilibrium Lyapunov exponent for the closed system. The following quantities characterize the
fractal repeller for viscosity with=60yn: Aneq is the nonequilibrium Lyapunov exponent of the repeller,
hks its KS entropy,y its escape rateg, its partial information codimension, arg, its partial Hausdorff

codimension.
n )\eq )\neq Y hys= )\neq_ Y C\= 7/)\neq CH
0.40 1.5156 1.5163 0.0017 1.5146 0.0011 0.0011
0.50 2.3519 2.3539 0.0023 2.3516 0.00098 0.00092
0.60 3.7258 3.7249 0.0015 3.7234 0.00040
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5 pTTT T T T T T T T T T T T T cosity coefficientp* in the hexagonal geometry and the el-
45 & 3 ementz,, .+ Of the viscosity tensor in the square geometry.
5 = 3 The values obtained with the chaos-transport form(@k)
.g 4 2 3 are compared with the values obtained by the escape-
= 35 F 3 transport formuld13) and those by the Einstein-Helfand for-
g = = mula (3) obtained in the previous papgt7]. The agreement
; = 3 between the three formulas is excellent, which confirms the
o 25 = theoretical results.
g 2f E
; 15 = V. CONCLUSIONS
o E = .
< 1E E In the present paper, we have applied the escape-rate for-
05 - 3 malism to the computation of shear viscosity in the two-disk
0:IIIIIIIIIIIIIIIIIIII|IIII|IIII|IIII|II = mOdeIbyBunlmOVIChandSpor['j'G]
02 025 03 035 04 045 05 055 0.6 0.65 The escape-rate formalism implies the appearance of a

density fractal repeller associated with viscosity. We have numeri-
cally generated the fractal repeller associated with viscosity

FIG. 15. Comparison between the three methods calculating thi this model and have provided evidence for its fractal char-
shear viscosity coefficienty* in the hexagonal geometry: the acter. Using the chaos-transport formula of the escape-rate
Einstein-Helfand formul&3) (continuous ling the escape-transport formalism, we have been able to evaluate the shear viscosity
formula (13) (dots, and the chaos-transport formuf25) (crosses  from the positive maximum Lyapunov exponent and the
with x=60yn. Hausdorff codimension of the fractal repeller of viscosity.

The values obtained by using the chaos-transport formula for
tions of this result can be found elsewhé¢f15,23. This  shear viscosity have been compared with the values obtained
method has been already used in REI&-15. by other methods based on the Einstein-Helfand formula,

We have here applied the Maryland algorithm to obtainwhich is equivalent to the Green-Kubo formula as shown in
the Hausdorff codimension of the fractal repeller of viscos-our previous papefl7]. An excellent agreement has been
ity. Table | compares the partial Hausdorff codimension withobserved between the different methods. This agreement
the partial information dimension in particular cases. We obbrings an important support to the escape-rate formalism as a
serve that both codimensions take very close values as exaethod to establish a connection between the transport
pected. properties—here of viscosity—and the underlying micro-

By varying the parametey, we have obtained the shear scopic chaotic dynamics. The agreement therefore confirms
viscosity, thanks to the chaos-transport form(28). These the theoretical results of the escape-rate formalig(.
values are plotted in Figs. 15 and 16 for the hexagonal and This confirmation opens perspectives for our understand-
square geometries, respectively. We consider the shear vigig of the hydrodynamic modes of shear viscosity. Indeed, in

the case of diffusion, the fractal character of the repeller has
20 T T been shown to imply that the nonequilibrium states are de-
scribed by singular measures defined in the phase space of
the systen{10]. These results suggest a similar scenario in
the case of viscosity that the nonequilibrium states of a
sheared fluid should also be described by singular measures
at the phase-space level of description.

The possibility of describing nonequilibrium states by sin-
gular measures has been mentioned by Hoover and co-
workers in the thermostated-system approé? where the
nonequilibrium constraints are taken into account by thermo-
stating forces which do not satisfy Liouville's theorem of
statistical mechanics. As a consequence, the trajectories of
such non-Hamiltonian systems collapse to an attractor by the
effect of the average contraction of phase-space volumes and
the singular measures supported by the attractor are not com-
patible with the Hamiltonian character of the microscopic
dynamics. Thanks to the escape-rate formalism, these prob-

FIG. 16. Comparison between the three methods calculatingems are solved and the singular measures we here propose
77;y,xy in the square geometry: the Einstein-Helfand form(8x are compatible with Hamiltonian dynamics and its Liou-
(continuous ling the escape-transport formul&3) (dotg, and the  Ville’s theorem.

18

16
14
12

xy.xy
=

—

t * +— T ’#‘ T 1T T 1 T 1 1 11 | |
0.4 0.5 0.6 0.7
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o T
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=%

chaos-transport formulé25) (crossek with y=45\n for density Our results can be extended to investigate the connection
n<0.66, y=100yn for 0.67<n<0.75, andy=150/n for 0.76  between viscosity and underlying chaos in many-particle
<n. systems with a whole spectrum of positive Lyapunov expo-
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nents. In many-particle systems, the fractal repeller is charare limited to a finite range in a system containing a finite

acterized by a spectrum of partial fractal dimensions whicmumber of particles. In this way, the transport properties

enter the chaos-transport formul23). In this way, we can could be studied for nanoscopic systems of increasing size in

decompose a transport property such as viscosity onto the similar way as the equilibrium thermodynamic properties

spectrum of Lyapunov exponents. have been studied in nanoscopic systems as a function of
The escape-rate formalism also opens perspectives their size.

study viscosity and other transport properties in nanoscopic We hope to report on these issues in future publications.

systems such as nanopipes or atomic and molecular clusters.
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