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Viscosity in the escape-rate formalism

S. Viscardy and P. Gaspard
Center for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine, Code Postal 231,

B-1050 Brussels, Belgium
~Received 7 February 2003; published 23 October 2003!

We apply the escape-rate formalism to compute the shear viscosity in terms of the chaotic properties of the
underlying microscopic dynamics. A first-passage problem is set up for the escape of the Helfand moment
associated with viscosity out of an interval delimited by absorbing boundaries. At the microscopic level of
description, the absorbing boundaries generate a fractal repeller. The fractal dimensions of this repeller are
directly related to the shear viscosity and the Lyapunov exponent, which allows us to compute its values. We
apply this method to the Bunimovich-Spohn minimal model of viscosity which is composed of two hard disks
in elastic collision on a torus. These values are in excellent agreement with the values obtained by other
methods such as the Green-Kubo and Einstein-Helfand formulas.
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I. INTRODUCTION

The link between the irreversible phenomena governed
macroscopic equations such as the Navier-Stokes equa
and the microscopic reversible dynamics of the atoms
molecules is a fundamental problem. In this context, it h
been shown that typical many-body systems of interac
particles present a chaotic dynamics@1–4#. This microscopic
chaos develops a sensitivity to initial conditions over a ti
scale of the order of the intercollisional time of the atom
and molecules. This sensitivity to initial conditions is cha
acterized by positive Lyapunov exponents which are
rates of exponential separation between some reference
perturbed trajectories of the system. The sensitivity to ini
conditions results into a huge dynamical randomness cha
terized by a positive Kolmogorov-Sinai~KS! entropy per
unit time given by the sum of positive Lyapunov expone
if the system is at equilibrium:

hKS5 (
l i.0

l i , ~1!

an identity known as Pesin’s equality@5,6#. This dynamical
chaos provides an efficient mechanism of randomization
the different observable quantities such as the microsc
currents associated with the transport properties.

For a Hamiltonian-type microscopic dynamics, a conn
tion can be established between dynamical chaos and
transport properties, thanks to the escape-rate forma
@7–11#. In this formalism, the gap between the kinetic tim
scale of chaotic properties and the hydrodynamic time s
of transport properties is bridged by linking the transp
coefficients todifferencesbetween chaotic properties. In th
formalism, the following formula has been derived for vi
cosity @8#:

h5 lim
x→`

S x

p D 2S (
l i.0

l i2hKSD
Fx

, ~2!
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where the difference between the sum of positive Lyapun
exponents and the KS entropy is nonvanishing because
system is here undernonequilibriumconditions. These non
equilibrium conditions select the trajectories of the man
body system which do not escape out of a phase-space
gion specific to the transport property of interest. This pha
space region is defined by requiring that the Helfand mom
associated with the transport property remains bounded i
interval of extensionx. In the limit x→`, the nonequilib-
rium condition is progressively relaxed and the sum of po
tive Lyapunov exponents as well as the KS entropy appro
their equilibrium value satisfying Pesin’s equality~1!. Under
nonequilibrium conditions, Pesin’s equality is not satisfi
and the difference gives the rate of escape of trajectories
of the aforementioned phase-space region@5,12#. This region
contains a fractal repellerFx composed of trajectories whic
escape neither in future nor in past. The escape rate is c
acteristic of this fractal repeller and is related to the transp
coefficient, leading to formula~2!. The escape-rate formal
ism has already been applied to the transport property
diffusion @13# as well as to reaction-diffusion process
@14,15#.

The purpose of the present paper is to apply the esc
rate formalism to viscosity. The system we use as a veh
of our study is a minimal model of viscosity previously an
lyzed by Bunimovich and Spohn@16#. The minimal models
of transport are of special interest because they are the
plest possible models already presenting a positive and fi
transport coefficient. It is known that a minimal mod
should contain only one particle for diffusion, two particle
for viscosity, and three particles for heat conduction@16#. For
viscosity, we therefore consider here the model compose
two hard disks moving on a torus and undergoing ela
collisions. In a previous paper@17#, we have described this
model and some of its properties for a hexagonal geom
and a square geometry. Our aim here is to compute visco
thanks to the escape-rate formalism, and to show the equ
lence with the results of the Green-Kubo and Einste
Helfand formulas already obtained in the previous pa
@17#.
©2003 The American Physical Society05-1
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In the present paper, we compute the viscosity by us
the chaotic and fractal properties of the repeller. We us
variant of Eq.~2! in which the difference between positiv
Lyapunov exponents and KS entropy is given in terms of
Lyapunov exponents and the partial fractal dimensions of
fractal repeller. Indeed, the fractality of the repeller is a c
ollary of its chaoticity so that its fractal dimensions are
lated to its KS entropy. Accordingly, the knowledge of t
partial dimensions allow us to evaluate the KS entropy.

The paper is organized as follows. In Sec. II, we deve
the escape-rate formalism for shear viscosity. In Sec. III,
present the fractal repeller of viscosity in the two-di
model, which we compare with the fractal repeller of diff
sion in the Lorentz gas. In this way, we show that a spec
fractal repeller is associated with each transport prope
Finally, the chaotic and fractal properties are described
Sec. IV where we compute the viscosity coefficient from t
positive Lyapunov exponent and the fractal dimension of
repeller. Conclusions are drawn in Sec. V.

II. VISCOSITY IN THE ESCAPE-RATE FORMALISM

A. Helfand moment for viscosity

In the previous paper@17#, we have shown that the she
viscosity coefficient can be computed with the Einste
Helfand formula@18#

h5hxy,xy5hyx,yx5 lim
t→`

1

2t
^@G̃yx~ t !2G̃yx~0!#2&, ~3!

where the Helfand moment is defined by

G̃yx[Ab

V
Gyx5Ab

VF (
a51

N

xa~ t !pay~ t !

2 (
a51

N

(
s

Dxa
(s)pay

(s)u~ t2ts!G ~4!

for a system ofN particles of positionra5(xa ,ya , . . . ) and
momentumpa5(pax ,pay , . . . ) moving in a domain delim-
ited by periodic boundary conditions. As explained in t
previous paper@17#, the particles must satisfy the minimum
image convention, which requires the presence of the e
terms in the Helfand moment~4! involving the jumpsDxa

(s)

of the particles to fulfill the periodic boundary conditions.ts

are the times of the jumps.pay
(s)5pay(ts) is the momentum a

the timets of the jump. In Eq.~3!, the averagê•& is taken in
the equilibrium microcanonical ensemble for which

b5
N

kBT~N21!
. ~5!

B. First-passage problem for viscosity

The central object of the escape-rate formalism is
fractal repeller which is composed of the phase-space tra
tories for which the Helfand moment fluctuates forever~in
the future and the past! within some interval:
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x

2
<G̃yx<1

x

2
. ~6!

These trajectories are exceptional because the Helfand
ment escapes out of this interval for almost all the trajec
ries. Therefore, the repeller has a vanishing probability m
sure in the phase space albeit it is typically composed o
nonenumerable set of trajectories. The repeller thus typic
forms a fractal in the phase space@9,10#.

We set up a first-passage problem of the Helfand mom
by introducing absorbing boundaries atG̃yx56x/2. These
absorbing boundaries in the space of variations of the H
fand moment correspond to equivalent absorbing bounda
in the phase space of the system. In the phase space
absorbing boundaries delimit a domain which contains
fractal repeller. We consider a statistical ensemble of ini
conditions taken inside this domain and we run their traj
tories. When a trajectory reaches the absorbing boundari
escapes out of the domain and is thus removed out of
statistical ensemble.

Under the forward time evolution, the remaining traject
ries belong to the stable manifolds of the repeller. Under
backward time evolution, the remaining trajectories belo
to the unstable manifolds of the repeller. Under both
forward and backward time evolutions, the remaining traj
tories belong to the repeller itself which is the intersection
its stable and unstable manifolds@9#. For a typical chaotic
dynamics, almost all trajectories escape out of the dom
after some time so that the repeller as well as its stable
unstable manifolds are fractal objects.

These fractals can be generated by allowing the escap
trajectories over a long but finite time interval. Over a fin
time, there remains a sizable set of trajectories, which p
gressively reduces to the fractal as the time interval beco
longer and longer. The number of trajectories in the set~or
statistical ensemble! decays with time. Typically, the decay i
exponential and characterized by the so-called escape rag.

The escape rateg can be evaluated by solving the firs
passage problem of the Helfand moment by introducing
sorbing boundaries atG̃yx56x/2. Indeed, the Einstein
Helfand equation ~3! shows that the Helfand momen
performs a diffusivelike random walk. Accordingly, the He
fand moment can be considered as a random variablg

5G̃yx for which the probability densityp(g) obeys a
diffusion-type equation@8#:

]p

]t
5h

]2p

]g2
, ~7!

where the role of the diffusion coefficient is played by t
shear viscosity~3! itself. At the absorbing boundaries, th
probability density must satisfy the absorbing boundary c
ditions:

pS 2
x

2D5pS 1
x

2D50. ~8!
5-2
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The solution of the diffusion-type equation~7! with the
boundary conditions~8! is given by

p~g,t !5 (
n51

`

cn exp~2gnt !sinFpn

x S g1
x

2D G , ~9!

with

gn5hS pn

x D 2

, ~10!

and where the coefficientcn depends on the initial probabil
ity density. The numberN(t) of trajectories remaining be
tween the absorbing boundaries at the current timet is re-
lated to the probability density by

N~ t !5N0E
2x/2

1x/2

p~g,t !dg;N0 exp~2g1t !. ~11!

After a long time, the escape is dominated by the smal
decay rateg1, which can therefore be identified with th
escape rateg. In this way, we obtain theescape rateas a
function of x:

g5g15hS p

x D 2

. ~12!

This result is obtained by using the diffusion-type equat
~7! which is expected to hold over spatial distances lar
than the mean free path of the particles. Therefore, the
rameterx must be sufficiently large so that the Helfand m
ment is in a diffusion regime and Eq.~7! holds.

The shear viscosity coefficient can thus be obtained fr
the escape rate which depends on the parameterx of sepa-
ration between the absorbing boundaries as

h5 lim
x→`

S x

p D 2

g~x!. ~13!

In the following we call Eq.~13! the escape-transport for
mula.

C. The chaos-transport formula

At the microscopic level of description, the escape rate
controlled by the fractal repellerFx which is composed of al
the trajectories which satisfy condition~6! under forward and
backward time evolutions. The repeller is the support o
natural invariant probability measure. This invariant meas
is natural because it is generated by the dynamics and ca
approximated by a statistics based on the trajectories rem
ing within the absorbing boundaries after a long but fin
time. The dynamics on the fractal repeller is characterized
positive Lyapunov exponents and a KS entropy, both eva
ated with respect to the natural invariant measure of the
peller. If the dynamics is unstable some Lyapunov expone
are positive. If the dynamics is chaotic the KS entropy
positive. On a repeller, the sum of positive Lyapunov exp
nents differs from the KS entropy and the difference giv
the escape rateg(x) of the repellerFx @5,12#:
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g~x!5S (
l i.0

l i2hKSD
Fx

. ~14!

If we combine this result from dynamical systems theo
with Eq. ~13!, we obtain the chaos-transport formula~2! for
viscosity as originally derived by Dorfman and Gaspard@8#.

An equivalent formula can be obtained which involves t
partial fractal dimensions of the repeller instead of the
entropy. Indeed, the fractal character of the repeller is a
rect consequence of the escape of trajectories so that the
entropy is no longer equal to the sum of Lyapunov expone
but to

hKS5 (
l i.0

dil i , ~15!

where the coefficients are the partial information dimensio
of the repeller associated with each unstable direction of c
responding Lyapunov exponentl i @5#. These partial dimen-
sions satisfy

0<di<1, ~16!

so that the KS entropy is in general smaller than the sum
positive Lyapunov exponents. Accordingly, the escape r
can be expressed as

g~x!5S (
l i.0

cil i D
Fx

~17!

in terms of the partial codimensions defined as

ci[12di . ~18!

Combining with Eq.~13!, the shear viscosity is given by

h5 lim
x→`

S x

p D 2S (
l i.0

cil i D
Fx

. ~19!

In the limit x→`, the Lyapunov exponents reach their equ
librium valuesl i ,eq, while the codimensions vanish typicall
asci;x22 if transport is normal. If we introduce the quan
tities

ai[ lim
x→`

S x

p D 2

ciU
Fx

, ~20!

Eq. ~19! provides a decomposition of the viscosity coef
cient on the spectrum of Lyapunov exponents such as

h5 (
l i ,eq.0

ail i ,eq. ~21!

Typically, the escape is most important in the most unsta
direction corresponding to the maximum Lyapunov expon
l1. Therefore, the repeller is more depleted in the most
stable direction and the corresponding partial dimensiond1
is lower than the further ones. This reasoning suggests th
typical behavior is
5-3
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S (
l i.0

cil i D
Fx

.~c1l1!Fx
, ~22!

for x→` if the maximum Lyapunov exponentl1 is well
defined.

This is precisely the case in two-degree-of-freedom s
tems such as the two-disk model where the chaos-trans
formula reduces to

h5 lim
x→`

S x

p D 2

~cIl!Fx
, ~23!

wherel is the unique positive mean Lyapunov exponent a
cI the corresponding codimension which should be und
stood as the partial information codimension of the unsta
manifolds of the fractal repeller given in terms of the part
information dimension by Young’s formula@19#

cI512dI512
hKS

l
. ~24!

It is known that the partial information dimension of th
repeller is well approximated by the partial Hausdorff dime
sion if the escape rate is small enough and if Ruelle’s to
logical pressure does not present a discontinuity. This
condition is fulfilled if the system does not undergo a d
namical phase transition, which is the case in the fin
horizon regimes of Sinai’s billiard which controls the d
namics of both the Lorentz gas and the two-disk model@13#.
Under these conditions, we can replace the partial inform
tion codimension by the partial Hausdorff codimension in
chaos-transport formula and obtain the viscosity as

h5 lim
x→`

S x

p D 2

~cHl!Fx
. ~25!

In the limit x→`, the Lyapunov exponent converges to
equilibrium value so that we can also write

h5leqlim
x→`

S x

p D 2

cH~x!, ~26!

under similar conditions as Eq.~25!.

III. FRACTAL REPELLER

In this section, our purpose is to display the fractal rep
ler associated with viscosity in the two-disk model and
compare it with the fractal repeller of diffusion in the Lo
entz gas in order to show that they are different and there
specific to each transport property.

A. Shear viscosity in the two-disk model

The two-disk model has been studied by Bunimovich a
Spohn who proved, thanks to a central limit theorem, t
viscosity is positive and finite in this minimal model@16#. In
the previous paper@17#, we have considered the two-dis
model in the hexagonal geometry which we shall use in
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following. We showed in Ref.@17# that the dynamics reduce
to a Sinai billiard in the center-of-mass frame and that
Helfand moment~4! with N52 is then given by

G̃yx~ t !5Ab

VFx~ t !py~ t !2(
s

Dx(s)py
(s)u~ t2ts!G ,

~27!

where (x,y) are the coordinates of the relative position
both disks and (px ,py) the canonically conjugated relativ
momentum. The jumps happen when the trajectory of Sin
billiard crosses the hexagonal boundary. If the traject
crosses the side of labelv the trajectory is reinjected at th
opposite side so that the jump in position is given by t
lattice vectorDr (s)52cv

(s) corresponding to the sidev.
A fractal repeller is defined by considering all the traje

tories such that their Helfand moment satisfies the conditi

2
x

2
<G̃yx<1

x

2
, ~28!

where the parameterx should be large enough. The stab
manifolds of the fractal repeller can be visualized by plotti
the initial conditions of trajectories satisfying conditions~28!
over a long time interval extending forward in time. The
initial conditions are taken on the disk of Sinai’s billiard. Th
initial conditions are specified by the angleu of the initial
position and the anglef that the initial velocity makes with
a vector which is normal to the disk at the initial positio
~see Fig. 1!. The initial conditions are plotted in the Birkhof
coordinates (u,sinf).

Figure 2 depicts the fractal composed of the stable ma
folds of the repeller for viscosity in the two-disk model. W
provide evidence that the set is fractal by zooming succ
sively on it in Figs. 3 and 4, where the self-similarity of th
repeller clearly appears.

Let us take a section across the repeller in Fig. 2 atu0

5p/4. Taking the escape time of the corresponding traj
tory, we have obtained the escape-time function depicte
Fig. 5. The time for the trajectory to escape out of the pha
space region corresponding to interval~28! is infinite if the
trajectory belongs to the stable manifold of a trajectory of
repeller. Indeed, this trajectory is then asymptotic to a traj

FIG. 1. Initial conditions of the particles in the Sinai billiard.
5-4
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VISCOSITY IN THE ESCAPE-RATE FORMALISM PHYSICAL REVIEW E68, 041205 ~2003!
tory which does not escape. Accordingly, the escape-t
function has vertical asymptotes on the stable manifolds
the repeller. Since the repeller is fractal the vertical asym
totes are not enumerable, which explains the behavio
Fig. 5.

B. Diffusion in the Lorentz gas

Diffusion of a tracer particle in the hard-disk period
Lorentz gas has been studied with the escape-rate forma
in Ref. @13#. In this Lorentz gas, the tracer particle undergo
elastic collisions on hard disks forming a triangular lattice.
a unit cell of the lattice, the dynamics also reduces to Sin
billiard. The energy of the tracer particle is conserved as w
as the phase-space volumes. Sinai and Bunimovich h
proved that the dynamics is ergodic and mixing and that
diffusion coefficient is positive and finite in the finite-horizo
regime@20#. For diffusion, the associated Helfand moment
simply given by one of the coordinates (x,y) of position of
the tracer particle@8#. An escape process is associated w

FIG. 2. Fractal repeller associated with viscosity in the hexa
nal geometry with absorbing boundaries atx52.70. The density is
n5(2/V)50.45.

FIG. 3. Enlarging of the domain into the rectangle in Fig. 2.
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diffusion by setting up a problem of first passage of t
tracer particle at some absorbing boundaries. If we cons
the x coordinates, the tracer particle does not escape as
as the following condition is satisfied:

2
R

2
<x<1

R

2
. ~29!

The absorbing boundary conditions are therefore define
x56R/2. With these absorbing boundaries, the system
called anopen Lorentz gas@13#.

The trajectories trapped within interval~29! form a fractal
repeller as shown in Ref.@13#. In order to compare with the
fractal repeller of viscosity, we can plot the fractal repeller
diffusion in a similar way as here above for viscosi
~Fig. 6!.

Here again, we plot all the initial conditions of trajectorie
remaining within interval~29! over a long forward time in-
terval. These initial conditions are plotted in the sam

- FIG. 4. Enlarging of the domain into the rectangle in Fig. 3.

FIG. 5. Escape-time function vs sinf0 (u05p/4). This function
corresponds to a section in Fig. 2 along a vertical line atu0

5p/4.
5-5
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Birkhoff coordinates (u,sinf) of a disk around the coordi
natex.0 in the Lorentz gas. The set of the selected init
conditions approximates the stable manifolds of the fra
repeller. We zoom successively on this fractal in Figs. 7 a
8, which provides evidence of its self-similarity. As a cons
quence, the repeller is also fractal. The fractal dimension
the repeller is related to the diffusion coefficient of t
Lorentz gas and its Lyapunov exponent, as shown
Refs.@7,13#.

C. Comparison between diffusion and viscosity

We observe that the two fractal repellers associated,
spectively, with diffusion~see Fig. 6! and viscosity~see Fig.
2! are different. Indeed, although the global structure is si
lar, the trajectories belonging to the different repellers are
the same.

To convince us of this difference, we take some examp
of trajectories. In Fig. 9, we have a periodic trajectory bou
ing between two disks in the billiard. This trajectory belon

FIG. 6. Fractal repeller associated with diffusion in the hexa
nal geometry with absorbing boundaries atR54. The density of
hard disks isn50.45.

FIG. 7. Enlarging of the domain into the rectangle in Fig. 6
04120
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to the repeller associated with diffusion since the positiox
is bounded and satisfied@Eq. ~29!#. However, the viscosity
Helfand moment of this trajectory does not satisfy conditi
~28! so that it does not belong to the repeller of shear v
cosity. With Eq. ~27!, we see that, in one direction, bot
Dx(s) andpy

(s) are positive. Therefore, the contribution at th
passage is positive for the Helfand moment. In the ot
direction, bothDx(s) and py

(s) are negative but the produc
Dx(s)py

(s) is also positive. Accordingly, the Helfand mome
increases forever on this trajectory which, therefore, does
belong to the repeller associated with shear viscosity.

On the other hand, we can observe the opposite c
Figure 10 depicts an example of trajectory escaping fr
interval ~29! although its Helfand moment of viscosity re
mains between the absorbing boundary conditions~28!.

The repellers associated with different transport proper
are therefore different.

D. Escape rate and viscosity

In this section, we show that the shear viscosity can
obtained from the escape rate of the repeller by using
escape-transport formula~13!. We consider a sequence o
repellers with larger and larger values of the parameterx.
The escape rateg(x) is numerically evaluated for each re

- FIG. 8. Enlarging of the domain into the rectangle in Fig. 7

FIG. 9. Periodic trajectory belonging to the fractal repeller a
sociated with diffusion but not to the one associated with viscos
5-6
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VISCOSITY IN THE ESCAPE-RATE FORMALISM PHYSICAL REVIEW E68, 041205 ~2003!
peller by computing the decay of the numberN(t) of trajec-
tories still within interval~28! at current time and by extract
ing the escape rate from the exponential decay. The es
rate is observed to behave asg(x);x22 and the shear vis
cosity coefficient is then obtained with Eq.~13!.

Figures 11 and 12 depict the viscosity directly compu
from the escape rate and compared with the values obta
by the Einstein-Helfand formula in Ref.@17# in the hexago-
nal and square geometries, respectively. As in the prev
paper@17#, we consider reduced viscosities defined by

h i j ,kl* [
h i j ,kl

2AmkBT
. ~30!

We observe in Figs. 11 and 12 the excellent agreement
tween both methods.

IV. VISCOSITY FROM THE CHAOTIC AND FRACTAL
PROPERTIES OF THE REPELLER

In this section, we compute the shear viscosity coeffici
in terms of the chaotic and fractal properties of the repe

FIG. 10. Typical trajectory which moves through the whole s
tem but which has a Helfand moment that remains close to z
This trajectory belongs to the repeller of viscosity but not to the o
of diffusion.

FIG. 11. Comparison between two methods of calculating
shear viscosity coefficienth* 5hxy,xy* in the hexagonal geometry
the Einstein-Helfand formula~continuous line! and the escape
transport formula~13! with x560An ~dots!.
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by using the chaos-transport formula~25! which related the
viscosity to the Lyapunov exponent and the Hausdorff co
mension of the repeller of viscosity.

A. Lyapunov exponent

In Sinai’s billiard which controls the reduced dynamics
the two-disk model, the elastic collisions between the di
are defocusing. This induces a dynamical instability of t
trajectories which is characterized by the Lyapunov ex
nents. These exponents are the rates of exponential se
tions between a reference orbit and infinitesimally close
bits. Since the dynamics of Sinai’s billiard is symplectic a
volume preserving in the four-dimensional phase space,
Lyapunov exponent spectrum is (1l,0,0,2l) so that their
sum is vanishing. One of the Lyapunov exponents vanis
because of the absence of exponential separation in the
rection of the flow. Another one corresponding to the dire
tion perpendicular to the energy shell equals zero becaus
energy conservation.

There exists a method to calculate the positive Lyapun
exponent by considering the motion of a front of particl
accompanying the reference particle and issued from
same initial position but with different initial velocities@21#.
Because the dynamics is defocusing, this front is expand
Locally on the reference orbitG t the front ~called the un-
stable horocycle! is characterized by a curvatureku(G t) or,
equivalently, by its radius of curvature 1/ku(G t). Thanks to
this method explained in detail in Refs.@10,13#, we have
computed the positive Lyapunov exponent as a function
the density of the system~in the hexagonal and square g
ometries!. The equilibrium values of the Lyapunov expone
are obtained by running a trajectory in Sinai’s billiard wit
out absorbing boundaries and by averaging over a long t
interval. The resulting numerical values are depicted
Figs. 13 and 14.

-
o.
e

e

FIG. 12. Comparison between two methods of calculating
shear viscosity coefficienthxy,xy* in the square geometry: th
Einstein-Helfand formula~continuous line! and the escape-transpo
formula ~13! with x545An for density n,0.66, x5100An for
0.67,n,0.75, andx5150An for 0.76,n ~dots!.
5-7
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In the chaos-transport formula~25!, the Lyapunov expo-
nent has to be evaluated for the trajectories belonging to
fractal repeller. The statistical average is here carried out
the natural invariant probability measure concentrated on
fractal repeller. This invariant measure defines a nonequ
rium state for the motion. As aforementioned, the natu
invariant measure is generated by the dynamics itself.
cordingly, the Lyapunov exponent is numerically comput
by averaging over a statistical ensemble of trajectories wh
has not yet escaped after a long but finite time. This
semble can be as large as wished by increasing the num
of initial conditions. In this way, we can calculate the no
equilibrium values of the Lyapunov exponent.

In Table I, we present a comparison between the equ
rium Lyapunov exponentleq without absorbing boundary
conditions~as depicted in Figs. 13 and 14! and the nonequi-
librium Lyapunov exponentlneq(x) evaluated over a non
equilibrium measure which has the fractal repeller as s
port. The difference between these exponents is small an
the order of the escape rate, in agreement with the resul
Ref. @22# for the disordered Lorentz gas.

B. Hausdorff dimension and viscosity

In order to determine the viscosity by the chaos-transp
formula ~25!, we need to determine the partial Hausdo
codimensioncH of the fractal repeller. The correspondin

FIG. 13. Equilibrium Lyapunov exponent vs density in the he
agonal geometry.
04120
he
or
e
-
l

c-
d
h
-
er

-

-
of
of

rt
f

dimensiondH512cH is the Hausdorff dimension of the ver
tical asymptotes of the escape-time function depicted in F
5. Its values range in the interval 0<dH<1.

The Hausdorff codimension can be obtained using the
lowing numerical algorithm developed by McDonaldet al.
@23#. We consider an ensemble of pairs of trajectories st
ing from initial conditionsf0 differing in a valuee. The
time taken by the trajectories to escape out of the system
given by the escape-time function in Fig. 5. The pair is s
to beuncertainif the trajectories and their Helfand mome
present at least one of the following conditions:~i! both tra-
jectories follow paths that differ by the successive passa
through the cell boundaries, that is, if we associate to e
trajectory a symbolic sequence (v1 ,v2 , . . . ) which gives
the labels of the cell boundaries across which the succes
passages occur, and both sequences are different;~ii ! one of
both trajectories has its Helfand moment which reaches
fixed absorbing boundaries~28! when the Helfand momen
of the other one still remains within these limits. If the pa
does not present one of these conditions it is calledcertain.
The fractionf (e) of uncertain pairs in the initial ensemble
known to behave as the power

f ~e!;ecH, ~31!

giving the Hausdorff codimension as its exponent. Deriv

- FIG. 14. Equilibrium Lyapunov exponent vs density in th
square geometry.
:
e the

er,
TABLE I. Values of the characteristic quantities of chaos for different densitiesn in the hexagonal system
leq is the equilibrium Lyapunov exponent for the closed system. The following quantities characteriz
fractal repeller for viscosity withx560An: lneq is the nonequilibrium Lyapunov exponent of the repell
hKS its KS entropy,g its escape rate,cI its partial information codimension, andcH its partial Hausdorff
codimension.

n leq lneq g hKS5lneq2g cI5g/lneq cH

0.40 1.5156 1.5163 0.0017 1.5146 0.0011 0.0011
0.50 2.3519 2.3539 0.0023 2.3516 0.00098 0.00092
0.60 3.7258 3.7249 0.0015 3.7234 0.00040
5-8
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tions of this result can be found elsewhere@6,15,23#. This
method has been already used in Refs.@13–15#.

We have here applied the Maryland algorithm to obt
the Hausdorff codimension of the fractal repeller of visco
ity. Table I compares the partial Hausdorff codimension w
the partial information dimension in particular cases. We
serve that both codimensions take very close values as
pected.

By varying the parameterx, we have obtained the shea
viscosity, thanks to the chaos-transport formula~25!. These
values are plotted in Figs. 15 and 16 for the hexagonal
square geometries, respectively. We consider the shear

FIG. 15. Comparison between the three methods calculating
shear viscosity coefficienth* in the hexagonal geometry: th
Einstein-Helfand formula~3! ~continuous line!, the escape-transpor
formula ~13! ~dots!, and the chaos-transport formula~25! ~crosses!
with x560An.

FIG. 16. Comparison between the three methods calcula
hxy,xy* in the square geometry: the Einstein-Helfand formula~3!
~continuous line!, the escape-transport formula~13! ~dots!, and the
chaos-transport formula~25! ~crosses! with x545An for density
n,0.66, x5100An for 0.67,n,0.75, andx5150An for 0.76
,n.
04120
-

-
x-

d
is-

cosity coefficienth* in the hexagonal geometry and the e
ementhxy,xy* of the viscosity tensor in the square geomet
The values obtained with the chaos-transport formula~25!
are compared with the values obtained by the esca
transport formula~13! and those by the Einstein-Helfand fo
mula ~3! obtained in the previous paper@17#. The agreement
between the three formulas is excellent, which confirms
theoretical results.

V. CONCLUSIONS

In the present paper, we have applied the escape-rate
malism to the computation of shear viscosity in the two-d
model by Bunimovich and Spohn@16#.

The escape-rate formalism implies the appearance o
fractal repeller associated with viscosity. We have nume
cally generated the fractal repeller associated with visco
in this model and have provided evidence for its fractal ch
acter. Using the chaos-transport formula of the escape-
formalism, we have been able to evaluate the shear visco
from the positive maximum Lyapunov exponent and t
Hausdorff codimension of the fractal repeller of viscosi
The values obtained by using the chaos-transport formula
shear viscosity have been compared with the values obta
by other methods based on the Einstein-Helfand formu
which is equivalent to the Green-Kubo formula as shown
our previous paper@17#. An excellent agreement has bee
observed between the different methods. This agreem
brings an important support to the escape-rate formalism
method to establish a connection between the trans
properties—here of viscosity—and the underlying micr
scopic chaotic dynamics. The agreement therefore confi
the theoretical results of the escape-rate formalism@7,8#.

This confirmation opens perspectives for our understa
ing of the hydrodynamic modes of shear viscosity. Indeed
the case of diffusion, the fractal character of the repeller
been shown to imply that the nonequilibrium states are
scribed by singular measures defined in the phase spac
the system@10#. These results suggest a similar scenario
the case of viscosity that the nonequilibrium states o
sheared fluid should also be described by singular meas
at the phase-space level of description.

The possibility of describing nonequilibrium states by s
gular measures has been mentioned by Hoover and
workers in the thermostated-system approach@24# where the
nonequilibrium constraints are taken into account by therm
stating forces which do not satisfy Liouville’s theorem
statistical mechanics. As a consequence, the trajectorie
such non-Hamiltonian systems collapse to an attractor by
effect of the average contraction of phase-space volumes
the singular measures supported by the attractor are not c
patible with the Hamiltonian character of the microscop
dynamics. Thanks to the escape-rate formalism, these p
lems are solved and the singular measures we here pro
are compatible with Hamiltonian dynamics and its Lio
ville’s theorem.

Our results can be extended to investigate the connec
between viscosity and underlying chaos in many-parti
systems with a whole spectrum of positive Lyapunov exp

he

g
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nents. In many-particle systems, the fractal repeller is ch
acterized by a spectrum of partial fractal dimensions wh
enter the chaos-transport formula~23!. In this way, we can
decompose a transport property such as viscosity onto
spectrum of Lyapunov exponents.

The escape-rate formalism also opens perspective
study viscosity and other transport properties in nanosco
systems such as nanopipes or atomic and molecular clus
Indeed, the escape-rate formalism provides a way to de
the transport properties already in nanoscopic systems
taining a very small number of particles. The escape-r
formalism is particularly appropriate for nanoscopic syste
because the transport coefficients can be defined with
escape rate of the Helfand moment out of a finite range
variation. Since the Helfand moment for viscosity can
seen as the center of momenta of the particles, its variat
go

-
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are limited to a finite range in a system containing a fin
number of particles. In this way, the transport propert
could be studied for nanoscopic systems of increasing siz
a similar way as the equilibrium thermodynamic propert
have been studied in nanoscopic systems as a functio
their size.

We hope to report on these issues in future publicatio
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